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LABORATORY INVESTIGATIONS

Effects of propofol on functional activities of hepatic and
extrahepatic conjugation enzyme systems
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The effect of propofol on the hepatic and extrahepatic conjugation enzyme systems was
assessed in vitro using microsomal and cytosolic preparations of human liver, hamster kidney,
lung and gut. The functional activities of phase-II enzymes, including uridine diphosphate-
glucuronosyltransferase (UDPGT), glutathione S-transferase (GST) and N-acetyltransferase
(NAT) were evaluated in the presence of various concentrations of propofol (0.05–1.0 mmol
litre–1), using 1-naphthol, 1-chloro-2,4-dinitrobenzene and p-aminobenzoic acid as substrates
respectively. Propofol produced concentration-dependent inhibition of UDPGT activity in
human liver microsomes. Propofol did not produce significant inhibition of human hepatic GST
activity at concentrations below 1.0 mmol litre–1. In contrast, NAT activity was unaffected by
propofol 0.05–1.0 mmol litre–1 in human liver cytosolic preparations. In extrahepatic tissues,
hamster renal and intestinal UDPGT activities were significantly inhibited by propofol at 0.25–
1.0 mmol litre–1. In these tissues, GST and NAT were unaffected by propofol at 1.0 mmol
litre–1. Propofol produced differential inhibition of human liver and hamster extrahepatic
conjugation enzymes as a result of different substrate and tissue specificities. The potential
interference of the metabolic profile of phase-II enzymes as a result of inhibition by propofol
(especially of UDPGT and GST) should be considered when using propofol with other drugs
for anaesthesia.
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The principal metabolic reactions occurring in hepatic and Propofol (2,6-diisopropylphenol) is a rapid-onset, short-
extrahepatic tissues are classified into ‘phase I’, (including acting intravenous anaesthetic agent that is used widely for
oxidation, reduction and hydrolysis) and ‘phase II’ (i.e. the induction and maintenance of anaesthesia as well as for
the conjugation pathways).1–3 Phase-II drug metabolism is long-term sedation in intensive care units.14 15 It has been
carried out by conjugation of drugs or their metabolites with noted that there is a pharmacokinetic interaction of
endogenous compounds such as glucuronic acid, glutathione propofol with narcotics, such as fentanyl and sufentanil,
and acetate to convert hydrophobic compounds to hydro- via inhibition of hepatic microsomal degradation.16 Previous
philic compounds and to facilitate their elimination from investigations have demonstrated that propofol interferes
the body.4–6 Glucuronidation, for example, being one of the

with the metabolism of co-administered drugs via animal
major conjugation reactions, is the key step involved in the

and human liver phase-I metabolizing enzymes. Formetabolism of anaesthetics such as morphine, meperidine,
example, there is interference with cytochrome P450-codeine and the benzodiazepines.7 8 The functions of these
dependent monooxygenases via interaction with the haemo-phase-II enzymes are known to be impaired in patients with
protein, and reduction of the efficiency of electron trans-severe liver disease or acute-phase responses such as
port.17 18 Whether the interactions caused by propofol occurinflammation.9 10 Other factors, including sex, age, fasting
purely via the phase-I enzymes or via phase-I and/or phase-and the ingestion of ethanol, may also regulate the function

of phase-II enzyme systems.11–13 II enzymes has not been examined. There are several lines
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of evidence indicating that propofol induces subclinical propofol (0.05–1.0 mmol litre–1) for each enzyme assay
were evaluated in human liver and hamster renal, lung andand reversible disturbance in hepatocellular integrity by

affecting the serum level of hepatic transferase (conjugation) gut tissues, and compared with the control.
enzymes in vivo after long-term infusion.19 20 The exact
effect of propofol on the functional activities of specific UDP-glucuronosyltransferase assay
phase-II conjugation enzymes has not yet been investigated. Uridine diphosphate-glucuronosyltransferase (UDPGT)
The aim of this study is to characterize the in vitro activity was studied by the method of Mackenzie and
concentration–response effect of propofol on the metabolic Hanninen, using 1-naphthol as the substrate.23 In brief,
function of various conjugation enzymes in both hepatic the enzymic reaction was initiated by mixing various
and extrahepatic tissues and to demonstrate the potential concentrations of propofol and 50% microsomes with
drug interactions involved in these metabolic pathways and 20 mg ml–1 sodium cholate (1:1 v:v) and cooling on ice for
clinical situations. 30 min. The pretreated microsomal preparation was added

to K-PO4 buffer 50 mmol litre–1, MgCl2 0.1 mol litre–1 and
1-naphthol 4.17 mmol litre–1 and incubated in 37°C forMaterials and methods
5 min. After adding UDP-glucuronic acid 5 mmol litre–1,
microsomal protein was incubated at 37°C for 10 min inSpecimens and animal preparations
the sample group, using K-PO4 buffer 50 mmol litre–1 asThe study was approved by the National Science Council
blank. The reaction was stopped on ice after 5 min.of Taiwan. After obtaining informed consent and local
The fluorescence intensity of the product, 1-naphthol β-D-ethics committee approval, human liver specimens were
glucuronide, was measured at excitation and emissionobtained from six men and two women aged between 32
wavelengths of 293 and 335 nm respectively.and 56 yr (mean 39 yr). Two of the specimens were

obtained from organ donation for transplantation, and the
Glutathione S-transferase assayother six were obtained as wedge biopsies from patients

with intestinal pathology, none of whom had a history In this study, we carried out the glutathione S-transferase
of liver disease or medication potentially affecting liver (GST) assay using the standard substrate 1-chloro-2,4-
function. Exclusion criteria included liver function dinitrobenzene, following the procedure of Habig et al.24

abnormalities such as abnormal serum levels of bilirubin Essentially, the reaction mixture contained 1 mmol litre–1

(normal range 0–1.2 mg litre–1), glutamic oxaloacetic glutathione in 0.1 mmol litre–1 K-PO4 buffer with 1 mmol
transaminase (normal range 15–37 u litre–1), glutamic pyr- litre–1 EDTA. After addition of 1 mmol litre–1 1-chloro-2,4-
uvic transaminase (normal range 15–45 u litre–1) and lactate dinitrobenzene to the sample cuvette, the absorbance of the
dehydrogenase (normal range 100–190 u litre–1) as well as mixture was measured at 340 nm for the baseline, with
any histopathological abnormality. All liver tissues were methanol as a reference. Cytosolic protein in 0.1 mmol
freshly frozen in liquid nitrogen and stored at �80°C within litre–1 K-PO4 buffer, pH 6.5, preincubated with various
10 min of resection. Male Syrian hamsters, 10–12 weeks concentrations of propofol, was then added to the mixture
old, weighing 100–120 g, were purchased from the Animal to start the reaction for 1 min. The rate of reaction
Center of the College of Medicine (National was monitored by measuring the absorbance increased at
Taiwan University, Taipei, Taiwan). They were housed and 340 nm.
stabilized in a light-controlled environment with a 12-h
light period for at least 1 week before being killed by N-acetyltransferase assay
decapitation. Kidneys, lungs and intestinal mucosa were N-acetyltransferase (NAT) activity was measured by
removed, rinsed and homogenized in ice-chilled 1.15% KCl quantifying the disappearance of the arylamine substrate,
(w/v) solution. After differential centrifugation, cytosolic as reflected by decreasing formation of Schiff base with
fractions and washed microsomes were prepared separately dimethylaminobenzaldehyde.25 In brief, the incubation
from homogenized tissues as described by Alvares and system consisted of Tris–HCl 75 mmol litre–1, pH 7.5, at
Mannering.21 Microsomes from the kidneys, lungs and gut 37°C, dithioerythreitol 1.5 mmol litre–1, EDTA 1.5 mmol
were pooled from four animals and frozen at –70°C; the litre–1, acetyl phosphate 22.5 mmol litre–1, phospho-
pellets were resuspended in potassium phosphate buffer transferase 2.5 U ml–1, p-aminobenzoic acid 0.4 mmol
0.1 mol litre–1 at pH 7.4 for assay. Microsomal and cytosolic litre–1 in Tris–HCl buffer, and 50 µl of diluted cytosol
proteins were assayed by the method of Lowry using bovine preincubated with propofol. The reaction was started by the
serum albumin as standard.22

addition of 40 µl of acetyl coenzyme A 1 mmol litre–1 to
the incubation mixture and was incubated at 37°C for

Phase-II enzyme assays 45 min. The reaction was terminated by the addition of
100 µl of 20% (w/v) tricyclic acid (TCA). The reactionPure propofol (ICI Pharmaceutica, Zeneca, Macclesfield,

UK) was diluted in microsomal and cytosolic fractions of mixture was centrifuged and the supernatant was mixed
with 1 ml of 5% dimethylaminobenzaldehyde. The samplehomogenized tissues. Concentration–response effects of
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Table 1 Functional activities of various phase-II drug-metabolizing enzymes in human liver, hamster kidney, lung and gut. All values are mean (SD) of n
observations. Each hamster tissue sample was pooled from four animals

Assay Human liver Hamster

Kidney Lung Gut

n 8 6 6 6
Microsomal protein (mg g tissue–1) 35.8 (6.8) 4.62 (0.88) 3.91 (0.74) 3.60 (0.48)
Cytosolic protein (mg g tissue–1) 49.7 (4.6) 42.8 (3.9) 37.6 (9.6) 28.4 (3.9)
UDPGT (nmol min–1 mg protein –1) 3.26 (0.75) 2.07 (0.38) 0.032 (0.004) 0.74 (0.12)
GST (nmol min–1 mg protein –1) 2.16 (0.86) 1.64 (0.61) 0.64 (0.28) 0.61 (0.20)
NAT (nmol min–1 mg protein –1) 7.06 (0.67) 2.17 (0.37) 0.87 (0.34) 3.04 (0.98)

was recentrifuged and incubated for at least 10 min at room
temperature, and the absorbance at 450 nm was then
recorded.

Unless otherwise stated, all results are presented as mean
(SD). Data were analysed using one- and two-way analyses of
variance and significant differences between concentrations
were identified using the Student–Newman–Keuls test or
the unpaired t-test. P�0.05 was considered statistically
significant.

Results
The activities of various enzymes were expressed on the
basis of protein concentrations in the reaction mixture
(Table 1). Protein content in the cytosolic components was
consistently greater than in the microsomal fraction. Human
liver exhibited the highest rate of catalytic activity. Enzyme
activities in hamster lung tissues were lower than in the
other tissues studied. Among the extrahepatic tissues, kidney
contained the highest activity of UDPGT and GST, whereas Fig 1 Effect of propofol concentration on the activities of UDPGT, GST

and NAT in human liver microsomal and cytosolic preparations. Valuesthe intestine contained the highest NAT activity. NAT
are mean (�SEM) of three measurements in each enzyme assay (n�8).showed the highest metabolic activity on a protein basis
*P�0.05, **P�0.01 vs control (one-way ANOVA with post hoc Student–among all enzymes within all the tissues studied.
Newman–Keuls test).

The effects of various concentrations of propofol on
functional activities of specific phase-II enzymes evaluated

litre–1 caused a 40–79% decline in hamster kidney UDPGT
within human liver microsomal and cytosolic fractions are

activity (P�0.05). Unlike the result obtained in human
shown in Figure 1. In human liver microsomes, propofol

liver, the effect of propofol in hamster kidney was only a
0.05 mmol litre–1 produced a small but non-significant

minor decline in GST activity, and this did not reach
decrease in UDPGT activity (P�0.08). Between 0.10 and

statistical significance (P�0.12 at propofol 1.0 mmol
1.0 mmol litre–1, propofol demonstrated concentration-

litre–1). As in human liver, NAT activity was not influenced
dependent inhibition of UDPGT activity. The metabolic

by increasing concentrations of propofol in hamster kidney
rate of UDPGT in human microsomes was decreased to

(Fig. 2, top panel). In hamster lung tissues, the activities
50% of the control by propofol 0.10 mmol litre–1 (P�

of GST and NAT were much lower than in human liver.
0.026) and to 14% of the control by propofol 1.0 mmol

The activity of UDGPT was just detectable in hamster lung.
litre–1 (P�0.0041). The activity of GST was not significantly

In contrast with kidney and gut, neither of the above
inhibited at low concentrations of propofol (0.10–0.5 mmol

enzymes in lung was affected by propofol (Fig. 2, middle
litre–1), but was significantly inhibited at a high concentra-

panel). In gut, propofol 0.25–1.0 mmol litre–1 produced
tion of propofol (1.0 mmol litre–1) (P�0.032). The metabolic

35–70% inhibition of UDPGT activity (P�0.05). However,
rate of NAT in human liver was unaffected by propofol

GST and NAT activities were unaffected (Fig. 2, bottom
(Fig. 1).

panel).
Figure 2 summarizes the effects of propofol on the

functional activities of various enzymes in hamster kidney,
Discussionlung and gut. The specific enzyme activity per unit weight

of protein in hamster kidney was about one- to two-thirds Traditionally, plasma levels of conjugation enzymes, such
as GST, are important parameters for the assessment ofof the activity in human liver. Propofol 0.25–1.0 mmol
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we increased the concentration of propofol from 0.10 to
1.0 mmol litre–1.18 27–29 Many endogenous and exogenous
amines, steroids and opioid compounds are metabolized
through glucuronidation reactions by UDPGTs.7 A previous
investigation by Janicki et al. showed that the microsomal
degradation of narcotics, such as alfentanil and sufentanil,
was hindered by the presence of propofol.16 Besides
propofol’s inhibition of microsomal monooxygenases, the
inhibition of glucuronidation by propofol provides another
possible mechanism for the interference of pharmacokinetics
and drug interactions with opioids.17 18 29

Many factors have been studied and identified as
modulators or inhibitors of UDPGT activity that might
provide explanations of the above findings. UDPGT proteins
are membrane proteins with a hydrophobic membrane-
spanning domain at their carboxyl terminus in addition to
other hydrophobic domains throughout the molecule, which
probably function to bind hydrophobic molecules.30 31

Propofol, a molecule with a high octanol/water partition
coefficient, is suitable for hydrophobic binding with UDPGT
proteins.14 Also, phenol activity was shown to be dependent
on the binding of phospholipids, and phospholipid binding
leads to conformational changes in the UDPGT enzyme.32

As an alkylated phenol, propofol might exhibit its potent
inhibition of UDPGT through binding to the membrane
protein and induce alterations in enzyme conformation as
well as a reduction of its reactivity.14 The present analysis
of extrahepatic tissues in the hamster also showed that the
gut and the kidneys are another two important sites for
glucuronidation; only modest activity was observed in the
lungs. Propofol at 0.25–1.0 mmol litre–1 exhibited similar,
but lower, inhibition of UPDGT activity in hamster kidney
and gut than in human liver. The difference between the
hepatic and extrahepatic effects of propofol on UDPGT
might be attributable to the species- and tissue-specificity

Fig 2 Effect of propofol concentration on the activities of UDPGT, GST
of the enzyme.3 4 The tissue distribution of the enzyme andand NAT in microsomal and cytosolic preparations of hamster kidney,
the functional heterogeneity of the UDPGT enzyme familylung and gut. Values are mean (SEM) of three measurements in each

enzyme assay (n�6, each pooled from four animals). *P�0.05 vs control within different tissues might explain the differences in the
group (one-way ANOVA with post hoc Student–Newman–Keuls test). inhibition induced by propofol.4

The GSTs are also a complex multigene family of
enzymes that are widely distributed in various tissues.33hepatocellular injury. After exposure to general anaesthesia

or long-term infusion of propofol, the plasma level of These enzymes are primarily located in the cytosol and
are important in detoxification by conjugating reducedGST increases significantly, indicating the presence of

hepatocellular damage and the leakage of cytosolic enzymes glutathione with a large number of electrophiles.34 The
plasma level GST has been used as a sensitive indicator ofinto the extracellular space.5 19 20 26 UDPGTs, the most

important phase-II enzymes we studied in the microsomal hepatocellular integrity in liver diseases or liver damage
induced by drug intoxication.5 35 36 Our data showed thatfraction, have a wide distribution in hepatic and extra-

hepatic tissues.3 4 Clinically, the plasma concentrations propofol did not exhibit significant inhibition of GST
activity at concentrations less than 1.0 mmol litre–1. Thereof propofol in humans and the hamster have been reported

to reach 0.067–0.10 mmol litre–1,27–29 although this are several possible explanations. First, the present study
showed that GST activity was relatively low among thesewould be reduced by a high level of protein binding.

Under similar concentrations in vitro, our data showed phase-II enzymes in human liver, hamster kidney and gut
tissues, making significant inhibition more difficult to detect.that propofol produced significant inhibition of the

conjugation activities of human liver and hamster extra- Secondly, GST may bind a number of anions, such as bile
salts, which might inhibit enzymic activity.37 Being ahepatic UDPGT. Concentration–response curves demon-

strated concentration-dependent inhibition of UDPGT when phenolic substitute, propofol might participate in the
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